
2015 5th International Conference on Computer and Knowledge Engineering (lCCKE)

Metamorphic Malware Detection Using Linear

Discriminant Analysis and Graph Similarity

Reza Mirzazadeh1 , Mohammad Hossein Moattar2 , Majid Vafaei Jahan3
Dept. of Computer Engineering

Mashhad Branch, Islamic Azad University,
Mashhad, Iran

lrmirzazadeh@mshdiau.ac.ir
2moattar@mshdiau.ac.ir

3vafaeiJ ahan@mshdiau.ac.ir

Abstract- The most common malware detection approaches

which are based on signature matching and are not sufficient

for metamorphic malware detection, since virus kits and

metamorphic engines can produce variants with no

resemblance to one another. Metamorphism provides an

efficient way for eluding malware detection software kits.

Code obfuscation methods like dead-code insertion are also

widely used in metamorphic malware. In order to address

the problem of detecting mutated generations, we propose a

method based on Opcode Graph Similarity (OGS). OGS

tries to detect metamorphic malware using the similarity of

opcode graphs. In this method, all nodes and edges have a

respective effect on classification, but in the proposed

method, edges of graphs are pruned using Linear

Discriminant Analysis (LDA). LDA is based on the concept

of searching for a linear combination of predictors that best

separates two or more classes. Most distinctive edges are

identified with LDA and the rest of edges are removed. The

metamorphic malware families considered here are NGVCK

and metamorphic worms that we denote these worms as

MWOR. The results show that our approach is capable of

classifying metamorphosed instances with no or minimum

false alarms. Also, our proposed method can detect NGVCK

and MWOR with high accuracy rate.

Keywords-metamorphic malware; virus detection; linear
discriminant analysis; opcode graph similarity;

I. INTRODUCTION

Today malware and viruses are serious problems for
governments, organizations and individuals. Malware
refers to software designed specifically to damage or
disrupt a system [2]. A metamorphic malware is one that
can transform based on the ability to translate, edit and
rewrite its own code. Metamorphism is the process of
transforming a piece of code into unique instances [1]. In
metamorphic malware, copies of the instances are
functionally equivalent, but their internal structures and
source codes differ. This ability allows new variants to
evade detection.

Signature scanning has been largely used as an
antivirus technique. Current anti-viruses (A V) fail to detect
metamorphic malware due to their varied internal
structures. As mal ware writers are aware of the popularity
of signature based A V, they have invented several
techniques to evade signature-based detection [3]. These
transformations include register renaming, code

978-1-4673-9280-8/15/$31.00 ©2015 IEEE

61

permutation, dead code insertion and block dead code
insertion.

Metamorphic mal ware is considered more difficult to
write than other malware such as polymorphic. In order to
ease this difficulty, mal ware writers have developed virus
creation kits. One of the most famous virus kits is "Next
Generation Virus Creation Kit" (NGVCK) [5]. It can
automatically generate new variants of a virus with the
same behavior.

Many methods have been proposed to detect
metamorphic viruses, which can be categorized into two
families: those that use dynamic analysis and those that
rely on static analysis of the code. [2]. Dynamic analysis
refers to observing a malware's behavior during run-time
while static analysis is the testing and evaluation of a
malware by examining the code without executing it.
Dynamic analysis is costly and needs an isolated
environment to perform. Furthermore, it suffers from
incomplete code coverage because it monitors only one
execution path while static analysis covers all part of a file.
In this study, we propose a method based on static analysis
and similarity method.

In this paper, we investigate on the method proposed
by Runwall et al. in [4]. In basic Opcode Graph Similarity
(OGS) all nodes and edges contribute to the final result.
Therefore, this approach is not immune against code
obfuscation like dead code insertion. To address this
problem, we combine the proposed method by Linear
Discriminant Analysis (LDA) in order to prune dead codes
from the graphs. Also, we used a more precise criterion to
set a threshold. The results are promising and show high
accuracy rate for detection of NGVCK and MWOR [6]
metamorphic mal ware.

The paper is organized as follows: In section 2, related
works are reviewed. In section 3 background information
for the proposed method is provided. Then in the next
section we present our methodology. In section 5, we
illustrate our experimental result on NGVCK and MWOR.
Section 6 discusses different aspects of proposed method.
Finally section 7 contains our conclusion.

II. RELATED WORKS

Prior research in [7] developed a statistical method for
metamorphic mal ware detection using Hidden Markov
Model (HMM). The main idea was to train an HMM with

Authorized licensed use limited to: Northeastern University. Downloaded on June 25,2021 at 19:32:40 UTC from IEEE Xplore. Restrictions apply.

opcodes extracted from viruses of a metamorphic family.
The trained HMM will model the characteristics of a
metamorphic virus. With this solution, it would be possible
to calculate a score representing how close a file is to a
virus family given by the trained HMM. Also, they
revealed that NGVCK has the highest rate of obfuscation
comparing with other metamorphism engines. In [8],
authors proposed a method based on Profile HMM
(PHMM) for metamorphic detection. A low detection rate
was achieved for NGVCK but VCL-32 and PS-MPC
detection rates were acceptable. Ref. [9] has studied on
more obfuscated metamorphic malware and evaded HMM
detector by inserting dead code of benign files to malware
ones which resulted in poor accuracy. To tackle this
problem, authors in [lO] published a method based on
statistical techniques which improved HMM in
combination with Chi-squared test.

Many efforts have been made in accordance with
malware detection by using graph analysis. Reference [11]
proposes a graph-based method for mal ware detection. It
extracts the sequence of opcodes and builds a weighted
directed graph where each opcode is a node of the graph.
Authors of [4] tried to improve the last method of
metamorphic detection using Opcode Graph Similarity
(OGS) and could obtain a high accuracy rate for NGVCK
detection which was comparable to HMM detection rate.

Researchers have published a metamorphic worm in
[12]. This malware is highly obfuscated and it can easily
evade HMM and OGS. What distinguishes this
metmorphic mal ware from the others is that it can carry its
own morphing engine. Authors in [13] used LDA and data
mining methods for metamorphic malware detection.
Using LDA, they could rank opcode bi-gram features for
classifying benign and mal ware files. The accuracy rate for
NGVCK was about 99.7%.

In overall, prior researches are based on similarity
methods and prone to elusion because they do not provide
clear solution for encountering code obfuscation such as
dead-code insertion.

III. MATERIALS AND METHODS

A. Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) is a method used

in many fields such as machine learning and pattern
recognition for extracting features which preserve class
separability. LDA is based upon the concept of searching
for a linear combination of predictors that best separates
two or more classes. Using LDA, features are selected
based on the ratio of the total within-class variability and
between-class variances. Within-class scatter matrix Sw is
computed by (1):

c

Sw = L PkSi (1) i= l

C denotes the number of classes. In our problem, it
would be 2 because there are two classes, i.e. Malware
and Benign. Pk is the probability for class k and is

62

considered 0.5 in this paper. Sjis the vanance of the
features and computed as follows (2):

n

Sj = L (x - mi)(x - maT
XEDi

(2)

Here miis the mean vector, x is the value of each
feature and Si is the resulting scatter matrix of the ith

class. Between-class variability matrix SBis computed by
the (3) as follow:

C

SB = L NJmi - m)(mi - m? (3)
i= l

In (3)m is the overall mean, and mj and Njare the
sample mean and sizes of the classes, respectively. It can
be clearly seen that between-class variability is computed
by variance of class centers with respect to global center.

B. Opcode Graph Similarity
This method was introduced in [4]. It is based on a

graph-based technique that was used in [14]. In this
approach authors try to make a weighted directed graph
from opcodes of binary files. Each distinct opcode is a
node in a directed graph. For each transition between
opcode nodes, a weighted directed edge is added. Edge
weights are the transition probabilities. The dissimilarity
score of A and B opcode graphs is computed as follows:

(N-1)2

Score (A, 8) = :2 .L laij - bijl
!,)=o

(4)

Experiments indicate that mal ware graphs are more
similar and they are different from benign graphs.
Therefore, it is possible to set a threshold to distinguish
malware and benign programs.

IV. PROPOSED METHODOLOGY

Fig. 1 summarizes the proposed methodology. The
main goal here is to improve the opcode graph similarity
method with the aid of LDA. With regard to OGS
technique, it is needed to make graphs from opcodes and
compare the graphs in order to determine whether the input
file belongs to the metamorphic family or not. In the
following section, the proposed approach is described.

A. Preprocessing
In the first step we need to prepare our dataset. As

mentioned before, our method is based on static analysis,
so it is needed to extract opcode sequences of files. For
extracting opcodes, each file should be converted to the
machine instructions. We used IDA Pro [15] for this
purpose. Operands in machine instructions do not have an
important role, so we omitted them. Then, the dataset is
divided into training and validation sets. In this study,
k-cross-fold validation is used [16].

Authorized licensed use limited to: Northeastern University. Downloaded on June 25,2021 at 19:32:40 UTC from IEEE Xplore. Restrictions apply.

B. Training
As mentioned before, in OGS, all edges and nodes play

a respective part in the outcome. One of the most popular
obfuscation techniques used in metamorphic mal ware is
dead-code insertion; therefore, dead-code would be part of
graphs and edges. It could lead to false alarms in OGS.
According to [6], OGS is unable to distinguish high
obfuscated metamorphic worms from benign programs.
Hence, the main goal of this step is removing dead-code
and junk edges from graphs.

In section 3, it was shown that LDA could calculate
within and between variance of features. Our features here
are edges and their weights. If we could find edges that
have less within-class scatter and more between-class
variability, then they would be good candidates to remain
in the graph. Best edges are kept and the rest of them will
be pruned.

In order to perform this process, all distinct edges and
their weights should be extracted. Then, within and
between scatterings of each edge are calculated. To fmd
most effective edges, Eq (5) is used. We ranks edges in
descending order based on the following

Re value.Definitely low rank edges should be removed.
So, with the aid of the threshold, most effective features
are ready to be used.

5w + 5B
Re = ----

5w
(5)

Now the distinctive edges are ready and the graphs will
be pruned. In other words, all edges are removed from a
graph except distinctive edges. With this technique,
mal ware files would be more similar to each other because
their garbage codes were removed and also differ from
benign programs. Consequently, setting a discriminative
threshold is more affordable.

C. Set Treshold
The first and most important task in this phase is using

distinctive edges in comparisons. A threshold can separate
benign and metamorphic mal ware programs. In order to
set a threshold, all pairs of training mal ware files should
be compared with each other using Eq. (4) with regard to
the distinctive edges. Afterwards, all training benign files
are compared with all pairs of mal ware files. It is a strict
and precise measure to confirm that all benign and
malware files are sharply distinguished. In previous works
such as [4] only adjacent files were compared. At the end
of this step, there is a threshold that can distinguish
malware and benign files. Now, the trained model is ready
for use. In conclusion, in the trained model, malware files
are similar and benign files are different from mal ware
programs. Therefore, a threshold can differentiate them.

D. Prediction
The last step of the proposed method is prediction. All

newly entered benign and malware files in the test set are
compared with the malware files in the trained model. It is
expected that input mal ware be similar to the instances in
trained model and stand under the threshold. Conversely,
benign programs should stand above the threshold, and any
threshold violation leads to false alarms.

I
I

63

(

Step 1: preprocessing

)

Disassemble malware and benign files with IDA Pro I
+

Separate into Training and Test set I
t

Extract Opcodes I

•

(

Step 2: Training

)

Making graph of all instances

t
Extract all edges and their

weights

t
Determine distinguishing edges

with LDA

•

(

Step 3: Set threshold

)

Calculate difference between

all pair of mal ware and benign

files with regard to the

distinctive edges

!
I Set a threshold I

t
I Trained Model I

J
I Prediction r

/�
Test set

Malware Benign

Figure I. Flow of proposed method

Authorized licensed use limited to: Northeastern University. Downloaded on June 25,2021 at 19:32:40 UTC from IEEE Xplore. Restrictions apply.

V. EVALUATIONS

Improved OGS was implemented in Python and C
programming languages. We conducted all the
experiments on platform having 4 GB RAM and Core i5-
M460@2.53 GHz processor and the operating system was
64-bit Windows 7. In the following section, we will
discuss the experimental results.

A. Dataset
The metamorphic mal ware families considered here

are NGVCK [5] and worms developed in [6] and we
denote these worms as MWOR. MWOR uses different
methods for obfuscation. Dead-code insertion from benign
files is widely used in MWOR. The authors of [6] define
the ratio of dead-code to worm-code as the "padding
ratio". For example a padding ratio of 2 indicates that a
worm has twice as much dead-code as worm instructions.
Our dataset consists of 200 NGVCK malware and 40
benign files from Cygwin utility [17]. A wide variety of
metamorphic detection approaches have used this dataset
[7, 8, 10]. Furthermore, in [7], these malware files are
shown to be the most highly metamorphic viruses
generated with malware kits.

MWOR is a Linux-based malware; hence our benign
files were selected form Linux operating system. It
consists of 20 benign files. We used distinct set of
MWOR files with padding ratios of 0.5, l.0, l.5, 2.0, 2.5,
3.0, 3.5, and 4.0. Totally there are 800 MWOR worms.

B. Evaluation
There are 4 possible outcomes for detection. True

Positive (TP) which is the number of infected files that are
classified correctly, False Positive (FP) which is the
number of benign files that are classified as malware.
True Negative (TN) which is the number of benign files
misclassified and False Negative (FN) which is the
number of mal ware files that are classified as benign. The
accuracy rate is the number of correct classification
acquired divided by the total number of test files which is
computed as follows:

TP+TN
Total Accuracy = ------TP + TN + FP + FN

(6)

In MWOR dataset there are 8 categories. In order to
get a precise accuracy for each fold, (7) is used:

Total Accuracy + ITPR
Mean Fold Accuracy = 2

N
(7)

We applied five-fold cross-validation in our
experiments and used the mean of the accuracy values
achieved from the folds, which is denoted as mean
maximum accuracy (MMA) rate [10] and is computed as
follows:

5

MMA = �L Accuracy;
;=1

(8)

64

Where Total Accuracy;indicates the resulting accuracy
of ith fold in cross-validation.

C. Experimental results
In this section we present the result of our experiments

using an improved OGS detector. As mentioned before,
we used 5-cross-validation for NGVCK where the data is
divided into five equal subsets. Each fold has 160
mal ware and 20 benign files for training and the rest of
them are for the test. Fig. 2 shows the similarity score
between malware-malware files and mal ware-benign files
which are based on Eq (4) from a sample fold of training
data. In this example the threshold is 8 and it can be
clearly seen that both mal ware and benign files are
classified correctly.

18
16
14
12

(") 10 0 (ii
8
6
4
2
0

0

• Benign Vs NGVCK • NGVCK Vs NGVCK

10 20 30 40

File Number

Figure 2. Similarity score for benign versus NGVCK

50

As mentioned, we compared our test data with all
instances of training set. For example, for 40 mal ware
samples in test set we conducted 6400 comparison
between training set and test set and No threshold violation
was found. Also, we conducted 3200 comparisons for
benign files with metamorphic viruses in the training set
and again the threshold was not violated. We repeated
these steps for other folds and the same result achieved.
Consequently, it can confirm that our proposed method is a
strong approach for NGVCK detection. Table I illustrates
the result of NGVCK detection for Improved OGS.

Table I NGVCK detection results

Fold Accuracy (percent)

1 100

2 100

3 100

4 100

5 100

MMA 100

For MWOR we used two fold cross validation because
there are 20 benign files and accurate result at least 10 files
are needed for training phase. Therefore, 10 files from
benign and 50 files from mal ware with padding ratio 0.5

Authorized licensed use limited to: Northeastern University. Downloaded on June 25,2021 at 19:32:40 UTC from IEEE Xplore. Restrictions apply.

• Benign Vs. MWOR • MWOR Vs. MWOR

8

6

4

2

o
o 100 200 300 400 500 600 700 800

File Number

Figure 3. Similarity score for benign versus MWOR

Table II MWOR detection results

Mean Fold False False
Fold Accuracy Positive Negative

(percent)

I 99.07 0 0.01

2 99.79 0.01 0.001

MMA 99.43

were selected for training. The rest of the mal ware used
for test. Fig. 3 shows the similarity scores of the
malware and benign training samples. According to this
result, the threshold is considered 4.

In another experiment which is denoted in Table II
we compare test set data with random instances �
training model. It can be clearly seen that with
increasing obfuscation, the similarity of malware files be
close to benign files. The total accuracy for this fold is
about 99%.

D. Discussion
Fig. 4 illustrates the accuracy rate of NGVCK and

MWOR detection for the proposed method and original
OGS approach. This figure shows that the proposed
enhancement on OGS approach (i.e. LDA opcode
selection) was effective and the proposed approach is
less vulnerable against detection of high metamorphic
malware such as MWOR.

In our experiments we showed that our method can
effectively detect NGVCK and MWOR. There are some
parameters which can be discussed. During the
experiments, we maintained 50 most discriminative
edges. In our complementary experiments on NGVCK
we changed the number selected top edges. Table III
shows the results of these experiments for NGVCK.
The results show that FP and FN happens when 200
edges are maintained.

65

100

80

60

40

20

o
NGVCK MWOR

• Proposed
method

Figure 4. Accuracy rate of the proposed method versus OGS for
NGVSK viruses and MWOR worms

Table III. No. of selected top edges vs. accuracy rate

Top Edges Accuracv rate
50 100

100 100
150 100
200 99

Table IV shows our approach and well-known
methods and their results for metamorphic mal ware
detection. Structural Entropy [21] is a strong method for
MWOR detection but according the experimental result
it cannot detect NGVCK successfully. This approach
applies directly to binary files and structural entropy
score depends on segment length and the number of
segments. NGVCK tends to produce a lot of segments.
Therefore, it is successful for NGVCK detection. In
[22] Simple Substitution Distance (SSD) is proposed
based on substitution cipher cryptanalysis. The result is
not very promising for MWOR with high padding ratio
although area under the curve (AUC) is quite well for
lower padding ratio.

Authorized licensed use limited to: Northeastern University. Downloaded on June 25,2021 at 19:32:40 UTC from IEEE Xplore. Restrictions apply.

Table IV Comparison between well-known methods for NGVCK
and MWOR detection and the proposed approach

Method NGVCK MWOR
Proposed Method ./ ./

OGS ./ x

Structural Entropy x ./
HMM ./ x

SSD ./ x

In [19] authors illustrate that OGS is a reliable
method for Javascript metamorphic mal ware detection.
It has better accuracy than HMM and other well-known
methods for metamorphic malware detection. In [20], a
real world application has been designed for Javascript
metamorphic detection based on OGS. In this paper, we
proved that our method has better performance than
OGS. It is plausible that our method is a practical
solution for web-based metamorphic mal ware detection.

I. CONCLUSION

Metamorphic mal ware detection is a very
challenging research area, which has gained much
attention during previous years. In this study, we
proposed a similarity method based on Opcode Graph
Similarity and Linear Discriminant Analysis for
metamorphic malware detection. Our approach
overcomes weakness of OGS [4]. In state-of-the-art
OGS, all nodes and edges contribute to the final result
but in the proposed improved OGS, with the aid of
LDA, junk edges are pruned from graphs. In other
words, dead-code opcodes will be removed. Therefore,
benign-benign and malware-malware similarity will
increase and setting a threshold would be possible. The
proposed method yielded 100% total accuracy for
NGVCK and 99% accuracy for MWOR malware and
proves that Improved OGS is highly efficient for
metamorphic malware detection.

Future work could include detailed examination on
the parameters of the proposed approach. In addition,
with regard to [19], it is possible that Improved OGS
would have better accuracy for Javascript malware
detection. Therefore, using our method for Javascript
mal ware detection could leads to interesting result.

66

REFERENCES

[1] M. Stamp, Information Security: Principles and Practice. Wiley,
New York (2011)

[2] J. Aycock, Computer Viruses and Malware. Springer
Science+Business Media, LLC, 2006 .

[3] P. Szor, The Art of Computer Virus Research and Defense, I
edn. Addison Wesley Professional, Boston (2005).

[4] N. Runwal, R. Low, M., M. Stamp, "Op-code graph similarity
and metamorphic detection," J. Compu!. Virol. 8: 37-52 (2012).

[5] Heavens, V.x.:http://vx.netlux.orgl.

[6] S.M. Sridhara, M. Stamp, "Metamorphic worm that carries its
own morphing engine," J. Compu!. Virol. Hacking Tech. 9(2),
49-58 (2013).

[7] W. Wong and M. Stamp, "Hunting for metamorphic engines,"
Journal in Computer Virology, vol. 2, no. 3, pp. 211-229, 2006.

[8] S. Attaluri, S. McGhee, M. Stamp,"Profile hidden Markov
models and metamorphic virus detection," J. Comput. Virol.
5(2),151-169 (2009).

[9] D. Lin, M. Stamp, "Hunting for undetectable metamorphic
viruses," J. Compu!. Virol. 7(3),201-2014 (2011).

[10] A.H. Toderici, M. Stamp, "Chi-squared distance and
metamorphic virus detection," J. Compu!. Virol.9, 1-14 (2013)

[11] B. Anderson, et al. "Graph-based malware detection using
dynamic analysis," J. Comput. ViroI.7(4), 247-258 (2011)

[12] S.M. Sridhara, M. Stamp, "Metamorphic worm that carries its
own morphing engine," J. Comput. Virol. Hacking Tech.9(2),
49-58 (2013)

[13] J. Kuriakose, P. Vinod, "Ranked Linear Discriminant Analysis
Features for Metamorphic Malware Detection," In Proceedings
of 4th IEEE International Advanced Computing Conference
(IACC-2014

[14] B. Anderson, et al. "Graph-based malware detection using
dynamic analysis," J. Compu!. ViroI.7(4), 247-258 (2011).

[15] IDA Pro. http://www.hex-rays.com/idapro/

[16] Geisser, S.: Predictive Inference: An Introduction. Chapman and
Hall, London (1993)

[17] Cygwin. http://www.cygwin.com

[18] B. Rad, M. Masrom, and S. Ibrahim. "Opcodes Histogram for
ClassifYing Metamorphic Portable Executables Malware," In
ICEEE, pages 209--213, September 2012.

[19] M. Musale, T. Austin, M. Stamp, "Hunting for metamorphic
JavaScript malware," (2014)

[20] S.R. Javaji, "firefox add-on for metamorphic javascript malware
detection," (2015). Master's Projects. Paper 401.

[21] D. Baysa, et al. "Structural entropy and metamorphic mal ware,"
J. Comput. Virol. 9(4), 179-192 (2013)

[22] G. Shanmugam, R.M. Low, M.Stamp, "Simple substitution
distance and metamorphic detection," J. Compu!. Virol. Hacking
Tech. 9(3), 159-170 (2013)

Authorized licensed use limited to: Northeastern University. Downloaded on June 25,2021 at 19:32:40 UTC from IEEE Xplore. Restrictions apply.

